The molecular system, called RNA Editing for Programmable A to I Replacement (REPAIR) has profound potential as a tool for both research and disease treatment.
REPAIR is based on the gene editing tool CRISPR that can be used to modify DNA in cells.
The new system, developed by scientists from The Broad Institute and Massachusetts Institute of Technology (MIT) in the US, can change single RNA nucleosides in mammalian cells in a programmable and precise fashion.
"The ability to correct disease-causing mutations is one of the primary goals of genome editing," said Feng Zhang, from MIT.
"So far, we've gotten very good at inactivating genes, but actually recovering lost protein function is much more challenging," said Zhang.
"This new ability to edit RNA opens up more potential opportunities to recover that function and treat many diseases, in almost any kind of cell," he said.
REPAIR has the ability to target individual RNA letters, or nucleosides, switching adenosines to inosines.
In human disease, a mutation from G to A is extremely common; these alterations have been implicated in, for example, cases of focal epilepsy, Duchenne muscular dystrophy, and Parkinson's disease.
REPAIR has the ability to reverse the impact of any pathogenic G-to-A mutation regardless of its surrounding nucleotide sequence, with the potential to operate in any cell type.
Unlike the permanent changes to the genome required for DNA editing, RNA editing offers a safer, more flexible way to make corrections in the cell.
"REPAIR can fix mutations without tampering with the genome, and because RNA naturally degrades, it's a potentially reversible fix," said David Cox, a graduate student in Zhang's lab.
They selected an enzyme from Prevotella bacteria, called PspCas13b, which was the most effective at inactivating RNA.
The team engineered a deactivated variant of PspCas13b that still binds to specific stretches of RNA but lacks its "scissor-like" activity, and fused it to a protein called ADAR2, which changes the nucleoside adenosine to inosine in RNA transcripts.
"The success we had engineering this system is encouraging, and there are clear signs REPAIRv2 can be evolved even further for more robust activity while still maintaining specificity," said Omar Abudayyeh, also a graduate student in Zhang's lab.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
