New technique to make fuel cells more energy efficient

Image
Press Trust of India Boston
Last Updated : Nov 25 2016 | 4:43 PM IST
In a finding that could lead to better fuel cells and clean energy technologies, scientists have discovered that squeezing a platinum catalyst a fraction of a nanometre nearly doubles its activity.
A nanosize squeeze can significantly boost the performance of platinum catalysts that help generate energy in fuel cells, according to scientists at Stanford University in the US.
The team bonded a platinum catalyst to a thin material that expands and contracts as electrons move in and out, and found that squeezing the platinum a fraction of a nanometre nearly doubled its catalytic activity.
"In this study, we present a new way to fine-tune metal catalysts at the atomic scale," said Haotian Wang, a former graduate student at Stanford now at Harvard University.
"We found that ordinary battery materials can be used to control the activity of platinum and possibly for many other metal catalysts," said Wang.
The new technique can be applied to a wide range of clean technologies, Wang said, including fuel cells that use platinum catalysts to generate energy, and platinum electrolyzers that split water into oxygen and hydrogen fuel.
"Our tuning technique could make fuel cells more energy efficient and increase their power output," said Yi Cui, a professor of materials science and engineering at Stanford.
"It could also improve the hydrogen-generation efficiency of water splitters and enhance the production of other fuels and chemicals," said Cui.
Catalysts are used to make chemical reactions go faster while consuming less energy. The performance of a metal catalyst depends on its electronic structure - that is, how the electrons orbiting individual atoms are arranged.
The study focused on lithium cobalt oxide, a material widely used in batteries for cellphones and other electronic devices. The researchers stacked several layers of lithium cobalt oxide together to form a battery-like electrode.
"Applying electricity removes lithium ions from the electrode, causing it to expand by 0.01 nanometre. When lithium is reinserted during the discharge phase, the electrode contracts to its original size," Cui said.
For the experiment, the team added several layers of platinum to the lithium cobalt oxide electrode.
"Because platinum is bonded to the edge, it expands with the rest of the electrode when electricity is added and contracts during discharge," Cui said.
Separating the platinum layers a distance of 0.01 nanometre, or five per cent, had a significant impact on performance, Wang said.
"We found that compression makes platinum much more active. We observed a 90 per cent enhancement in the ability of platinum to reduce oxygen in water. This could improve the efficiency of hydrogen fuel cells," he said.
The findings were published in the journal Science.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 25 2016 | 4:43 PM IST

Next Story