A nanosize squeeze can significantly boost the performance of platinum catalysts that help generate energy in fuel cells, according to scientists at Stanford University in the US.
The team bonded a platinum catalyst to a thin material that expands and contracts as electrons move in and out, and found that squeezing the platinum a fraction of a nanometre nearly doubled its catalytic activity.
"In this study, we present a new way to fine-tune metal catalysts at the atomic scale," said Haotian Wang, a former graduate student at Stanford now at Harvard University.
The new technique can be applied to a wide range of clean technologies, Wang said, including fuel cells that use platinum catalysts to generate energy, and platinum electrolyzers that split water into oxygen and hydrogen fuel.
"Our tuning technique could make fuel cells more energy efficient and increase their power output," said Yi Cui, a professor of materials science and engineering at Stanford.
"It could also improve the hydrogen-generation efficiency of water splitters and enhance the production of other fuels and chemicals," said Cui.
The study focused on lithium cobalt oxide, a material widely used in batteries for cellphones and other electronic devices. The researchers stacked several layers of lithium cobalt oxide together to form a battery-like electrode.
"Applying electricity removes lithium ions from the electrode, causing it to expand by 0.01 nanometre. When lithium is reinserted during the discharge phase, the electrode contracts to its original size," Cui said.
"Because platinum is bonded to the edge, it expands with the rest of the electrode when electricity is added and contracts during discharge," Cui said.
Separating the platinum layers a distance of 0.01 nanometre, or five per cent, had a significant impact on performance, Wang said.
"We found that compression makes platinum much more active. We observed a 90 per cent enhancement in the ability of platinum to reduce oxygen in water. This could improve the efficiency of hydrogen fuel cells," he said.
The findings were published in the journal Science.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
