New ultraviolet LED for portable, low-cost devices

Image
Press Trust of India Washington
Last Updated : Sep 10 2013 | 1:25 PM IST
Researchers have developed a new ultraviolet (UV) light-emitting diode that could lead to more portable and low-cost devices.
The patent-pending LED creates a more precise wavelength of UV light than today's commercially available UV LEDs, and runs at much lower voltages and is more compact than other experimental methods for creating precise wavelength UV light.
The LED could lend itself to applications for chemical detection, disinfection, and UV curing. With significant further development, it might be able to provide a source for UV lasers for eye surgery and computer chip manufacture.
Ohio State University engineers created LEDs out of semiconductor nanowires which were doped with the rare earth element gadolinium.
The unique design enabled the engineers to excite the rare earth metal by passing electricity through the nanowires, said study co-author Roberto Myers, associate professor of materials science and engineering at Ohio State.
Doctoral students Thomas Kent and Santino Carnevale utilised another patent-pending technology they had helped develop - one for creating nanowire LEDs.
On a silicon wafer, they tailor the wires' composition to tune the polarisation of the wires and the wavelength, or colour, of the light emitted by the LED.
Gadolinium was chosen not to make a good UV LED, but to carry out a simple experiment probing the basic properties of a new material they were studying, called gadolinium nitride.
During the course of that original experiment, Kent noticed that sharp emission lines characteristic of the element gadolinium could be controlled with electric current.
Different elements fluoresce at different wavelengths when they are excited, and gadolinium fluoresces most strongly at a very precise wavelength in the UV, outside of the range of human vision. The engineers found that the gadolinium-doped wires glowed brightly at several specific UV frequencies.
The team showed that in a nanowire LED structure, the same effect can occur, but at far lower operating voltages: around 10 volts.
High voltage devices are difficult to miniaturise, making the nanowire LEDs attractive for portable applications.
The study was published in the journal Applied Physics Letters.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 10 2013 | 1:25 PM IST

Next Story