Scientists develop tech to convert carbon dioxide into hydrocarbon fuel

Malmstadt said that in contrast, the team's discovery uses a millifluidic reactor process, a very small scale chemical reactor system, which has a minimal environmental footprint.

emission
The nanoparticles are created using a process where carbides are heated to temperatures higher than 600 degrees centigrade, the researchers said.
Press Trust of India Los Angeles
3 min read Last Updated : Feb 14 2020 | 6:17 PM IST
Scientists have developed a new sustainable technology that uses nanoparticles to convert carbon dioxide (CO2) into hydrocarbon fuels, and other usable materials. The researchers at the USC Viterbi School of Engineering in the US discovered a metal carbide nanoparticle -- a compound of carbon and metal -- that can convert CO2 into fuel.

The particles can be produced at an industrial scale at a low cost, and with minimal environmental impact, providing a vital pathway towards reducing the world's greenhouse emissions, according to the study published in the Journal of the American Chemical Society.

"Basically what we are doing is we are turning the carbon dioxide from carbon oxygen bonds to carbon hydrogen bonds. So, we are turning carbon dioxide back into hydrocarbons," said Noah Malmstadt, a professor at the USC Viterbi School of Engineering.

"Hydrocarbonsith are basic fuel stock. You can eer turn them into fuel stock chemicals such as methane or propane. Or you can use them as the basis for chemical synthesis so they can be building blocks for making more complex chemicals," Malmstadt said.

Carbon emissions could be converted into material to make consumer products as well as hydrocarbon fuel, the researchers said.

Malmstadt said that until now, the process for creating the catalyst particles has been very energy intensive, making it an impractical solution for converting carbon emissions.

The nanoparticles are created using a process where carbides are heated to temperatures higher than 600 degrees centigrade, the researchers said.

The process makes it difficult to control the size of the particles, which impacts on their effectiveness as catalysts, they said.

Malmstadt said that in contrast, the team's discovery uses a millifluidic reactor process, a very small scale chemical reactor system, which has a minimal environmental footprint.

This means the particles can be produced at temperatures as low as 300 degrees Celsius, resulting in smaller, more uniform particles, which make them ideal for converting CO2 to hydrocarbons.

We are producing the particles sustainably, using green chemistry methods," Malmstadt said.

"The chemical reactor system operates in channels that are less than a millimetre across, which offers a tonne of advantages over traditional reactors, particularly in terms of making materials that are very uniform and very high quality," he said.

Malmstadt said that the resulting nanoparticles have a very high surface area to mass ratio. "So for each amount of metal that you have in the catalyst, you get more active surface area that can do chemistry," he said.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

Topics :Climate ChangeGlobal Warming

First Published: Feb 14 2020 | 5:38 PM IST

Next Story