Now, 3-D printer to build synthetic body tissues

Image
Press Trust of India London
Last Updated : Apr 05 2013 | 2:40 PM IST
Oxford scientists have developed a custom-built programmable 3D printer to create artificial living tissues.
The new type of material used in the printer consists of thousands of connected water droplets, encapsulated within lipid films, which can perform several of the functions of the cells inside our bodies.
These printed 'droplet networks' could be used for delivering drugs to places where they are needed and potentially one day replacing or interfacing with damaged human tissues.
Because droplet networks are entirely synthetic, have no genome and do not replicate, they avoid some of the problems associated with other approaches to creating artificial tissues - such as those that use stem cells.
The team reported their findings in the journal Science.
"We aren't trying to make materials that faithfully resemble tissues but rather structures that can carry out the functions of tissues," said Professor Hagan Bayley of Oxford University's Department of Chemistry, who led the research.
"We've shown that it is possible to create networks of tens of thousands of connected droplets. The droplets can be printed with protein pores to form pathways through the network that mimic nerves and are able to transmit electrical signals from one side of a network to the other," said Bayley.
Each droplet is an aqueous compartment about 50 microns in diameter. Although this is around five times larger than living cells the researchers believe there is no reason why they could not be made smaller. The networks remain stable for weeks.
"Conventional 3D printers aren't up to the job of creating these droplet networks, so we custom built one in our Oxford lab to do it," Bayley said in an Oxford statement.
"At the moment we've created networks of up to 35,000 droplets but the size of network we can make is really only limited by time and money. For our experiments we used two different types of droplet, but there's no reason why you couldn't use 50 or more different kinds," said Bayley.
The unique 3D printer was built by Gabriel Villar, researcher in Bayley's group and the lead author of the paper.
The droplet networks can be designed to fold themselves into different shapes after printing.
"We have created a scalable way of producing a new type of soft material. The printed structures could in principle employ much of the biological machinery that enables the sophisticated behaviour of living cells and tissues," Villar said.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 05 2013 | 2:40 PM IST

Next Story