Now, 3D printed objects which dramatically change shape

Image
Press Trust of India Washington
Last Updated : Jun 19 2017 | 5:57 PM IST
Scientists have developed a way to use 3D printers to create objects capable of expanding dramatically, which could someday be used in applications ranging from space missions to biomedical devices.
The objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension.
Researchers from the Georgia Institute of Technology in the US fabricated the struts from shape memory polymers that unfold when heated.
"Tensegrity structures are extremely lightweight while also being very strong," said Glaucio Paulino, a professor at Georgia Tech.
"That is the reason there is a heavy amount of interest right now in researching the use of tensegrity structures for outer space exploration. The goal is to find a way to deploy a large object that initially takes up little space," said Paulino.
The research, published in the journal Scientific Reports, used 3D printers to create the struts that make up one of the primary components of the tensegrity structure.
To enable the struts to be temporarily folded flat, the researchers designed them to be hollow with a narrow opening that runs the length of the tube.
Each strut has an attachment point on each end to connect to a network of elastic cables, which are also made with 3D printers.
Once the struts were heated to 65 degrees Celsius, the researchers could partially flatten and fold them into a shape resembling the letter W. The cooled structures then retain the temporary shape.
With all cables attached, the objects can be reheated to initiate the transformation into tensegrity structures.
"We believe that you could build something like an antenna that initially is compressed and takes up little space, but once it's heated, say just from the heat of the sun, would fully expand," said Jerry Qi, a professor at Georgia Tech.
A key component of making 3D printed objects that can transform into tensegrity structures was controlling the rate and sequence of expansion.
The shape memory polymers enable the researchers to fine-tune how quickly each strut expands by adjusting at which temperature the expansion occurs. That enables structures to be designed with struts that expand sequentially.
"For bigger and more complicated structures, if you don't control the sequence that these struts expand, it tangles and you have a mess," Paulino said.
"By controlling the temperature at which each strut expands, we can have a phased deployment and avoid this entanglement," said Paulino.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 19 2017 | 5:57 PM IST

Next Story