Pathway behind 20 neurodegenerative diseases identified

Image
Press Trust of India Melbourne
Last Updated : Sep 23 2013 | 1:20 PM IST
Researchers have identified a molecular pathway that causes a group of untreatable neurodegenerative diseases, including Huntington's disease and Lou Gehrig's disease.
The group of about 20 diseases, which show overlapping symptoms that typically include nerve cell death, share a similar genetic mutation mechanism - but how this form of mutation causes these diseases has remained a mystery.
"Despite the genes for some of these diseases having been identified 20 years ago, we still haven't understood the underlying mechanisms that lead to people developing clinical symptoms," said Professor Robert Richards, Head of Genetics in the University of Adelaide's School of Molecular and Biomedical Sciences.
"By uncovering the molecular pathway for these diseases, we now expect to be able to define targets for intervention and so come up with potential therapies. Ultimately this will help sufferers to reduce the amount of nerve cell degeneration or slow its progression," Richards said.
Researchers have found new evidence for the key role of RNA in the development of the diseases.
RNA is a large molecule in the cell that copies genetic code from the cell's DNA and translates it into the proteins that drive biological functions.
People with these diseases have expanded numbers of copies of particular sequences of the 'nucleotide bases' which make up DNA.
"In most cases people with these diseases have increased numbers of repeat sequences in their RNA," said Richards.
"The disease develops when people have too many copies of the repeat sequence. Above a certain threshold, the more copies they have, the earlier the disease develops and the more severe the symptoms.
"The current gap in knowledge is why having these expanded repeat sequences of genes in the RNA translates into actual symptoms," he said.
Richards said evidence points towards a dysfunctional RNA and a pivotal role of the body's immune system in the development of the disease.
"Rather than recognising the 'expanded repeat RNA' as its own RNA, we believe the 'expanded repeat RNA' is being seen as foreign, like the RNA in a virus, and this activates the innate immune system, resulting in loss of function and ultimately the death of the cell," he said.
The University of Adelaide laboratory modelled and defined the expanded repeat RNA disease pathway using flies (Drosophila).
"This new understanding, once proven in each of the relevant human diseases, opens the way for potential treatments, and should give cause for hope to those with these devastating diseases," Richards said.
The study was published in journal Frontiers in Molecular Neuroscience.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 23 2013 | 1:20 PM IST

Next Story