Scientists create never-before-seen form of matter

Image
Press Trust of India Washington
Last Updated : Sep 29 2013 | 5:05 PM IST
Harvard and MIT scientists have accidentally discovered a completely new form of matter that works in the same way as the light sabers used in Star Wars.
Researchers have managed to coax photons into binding together to form molecules - a state of matter that, until recently, had been purely theoretical.
The discovery led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic runs contrary to decades of accepted wisdom about the nature of light, researchers said.
Photons have long been described as massless particles which don't interact with each other - shine two laser beams at each other, he said, and they simply pass through one another.
"Photonic molecules," however, behave less like traditional lasers and more like something you might find in science fiction - the light saber.
"Most of the properties of light we know about originate from the fact that photons are massless, and that they do not interact with each other," Lukin said.
"What we have done is create a special type of medium in which photons interact with each other so strongly that they begin to act as though they have mass, and they bind together to form molecules. This type of photonic bound state has been discussed theoretically for quite a while, but until now it hadn't been observed," he said.
"It's not an in-apt analogy to compare this to light sabers," Lukin added.
"When these photons interact with each other, they're pushing against and deflect each other. The physics of what's happening in these molecules is similar to what we see in the movies, said Lukin.
To get the normally-massless photons to bind to each other, Lukin and colleagues couldn't rely on something like the Force - they instead turned to a set of more extreme conditions.
Researchers began by pumping rubidium atoms into a vacuum chamber, then used lasers to cool the cloud of atoms to just a few degrees above absolute zero.
Using extremely weak laser pulses, they then fired single photons into the cloud of atoms.
As the photons enter the cloud of cold atoms, Lukin said, its energy excites atoms along its path, causing the photon to slow dramatically.
As the photon moves through the cloud, that energy is handed off from atom to atom, and eventually exits the cloud with the photon, researchers said.
When Lukin and colleagues fired two photons into the cloud, they were surprised to see them exit together, as a single molecule.
The study was published in the journal Nature.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 29 2013 | 5:05 PM IST

Next Story