Scientists have taken an important step towards revealing the mysterious source of methane on Mars, by refining estimates of the gas in the Red Planet's atmosphere.
The methane puffing from a huge crater on Mars could be a sign of life or other non-biological activity under the planet's surface, according to researchers from Australian National University (ANU).
Gale crater, which is 154 kilometres in diameter and about 3.8 billion years old, is thought by some to contain an ancient lakebed.
In the study published in Geophysical Research Letters journal, the team was able to improve the estimate of methane by using data from a satellite, ExoMars Trace Gas Orbiter and NASA's Mars Curiosity Rover, which collects rock, soil and air samples for onboard analysis.
John Moores, an ANU Visiting Fellow based at York University in Canada, said scientists had been speculating for more than a decade as to what the source of methane on Mars could be.
"This new study redefines our understanding of how the concentration of methane in the atmosphere of Mars changes over time, and this helps us to solve the bigger mystery of what the source might be," said Moores.
ANU Professor Penny King said there were several equally plausible explanations for the methane detected on Mars.
"Some microbes on Earth can survive without oxygen, deep underground, and release methane as part of their waste," said King.
"The methane on Mars has other possible sources, such as water-rock reactions or decomposing materials containing methane," King said.
Last year, scientists learned that methane concentrations changed over the course of the seasons with a repeatable annual cycle.
"This most recent work suggests that the methane concentration changes over the course of each day," Moores said.
"We were able -- for the first time -- to calculate a single number for the rate of seepage of methane at Gale crater on Mars that is equivalent to an average of 2.8 kilogrames per Martian day," he said.
The team was able to reconcile the data from the ExoMars Trace Gas Orbiter and the Curiosity Rover, which appeared to contradict each other with wildly different detections of methane.
"We were able to resolve these differences by showing how concentrations of methane were much lower in the atmosphere during the day and significantly higher near the planet's surface at night, as heat transfer lessens," Moore said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
