Shape-shifting sensor to report internal body conditions

Image
Press Trust of India Washington
Last Updated : Apr 06 2015 | 2:07 PM IST
Scientists have designed a new, shape-shifting probe - one-hundredth the width of a human hair - for sensitive, high-resolution remote biological sensing not possible with current technology.
The design could have a major impact on research in medicine, chemistry, biology and engineering. Ultimately, it might be used in clinical diagnostics, researchers said.
Most efforts to image highly localised biochemical conditions such as abnormal pH and ion concentration - critical markers for many disorders - rely on various nanosensors that are probed using light at optical frequencies.
But the sensitivity and resolution of the resulting optical signals decrease rapidly with increasing depth into the body. That has limited most applications to less obscured, more optically accessible regions.
The new shape-shifting probe devices, described in the journal Nature, are not subject to those limitations.
They make it possible to detect and measure localised conditions on the molecular scale deep within tissues, and to observe how they change in real time.
"Our design is based on completely different operating principles," said US National Institute of Standards and Technology (NIST)'s Gary Zabow, who led the research with National Institutes of Health (NIH) colleagues Stephen Dodd and Alan Koretsky.
"Instead of optically based sensing, the shape-changing probes are designed to operate in the radio frequency (RF) spectrum, specifically to be detectable with standard nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) equipment. In these RF ranges, signals are, for example, not appreciably weakened by intervening biological materials," said Zabow.
As a result, they can get strong, distinctive signals from very small dimensions at substantial depths or in other locations impossible to probe with optically based sensors.
The novel devices, called geometrically encoded magnetic sensors (GEMs), are microengineered metal-gel sandwiches about 5 to 10 times smaller than a single red blood cell, one of the smallest human cells.
Each consists of two separate magnetic disks that range from 0.5 to 2 micrometres (millionths of a metre) in diameter and are just tens of nanometres (billionths of a metre) thick.
Between the disks is a spacer layer of hydrogel, a polymer network that can absorb water and expand significantly; the amount of expansion depends on the chemical properties of the gel and the environment around it.
Swelling or shrinking of the gel changes the distance (and hence, the magnetic field strength) between the two disks, and that, in turn, changes the frequency at which the protons in water molecules around and inside the gel resonate in response to radio-frequency radiation.
Scanning the sample with a range of frequencies quickly identifies the current shape of the nanoprobes, effectively measuring the remote conditions through the changes in resonance frequencies caused by the shape-changing agents.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 06 2015 | 2:07 PM IST

Next Story