Soon, bat-inspired flying robots

Image
Press Trust of India Washington
Last Updated : Feb 19 2014 | 3:56 PM IST
Scientists, including one of Indian-origin, are planning to develop small flying vehicles with flapping wings inspired by wing motions of a bat.
Researchers at Virginia Tech in US are studying how bats are able to fly by flapping their wings and will apply that knowledge toward designing small flying vehicles known as "micro air vehicles".
More than 1,000 species of bats have hand membrane wings, meaning that their fingers are essentially "webbed" and connected by a flexible membrane.
But understanding how bats use their wings to manipulate the air around them is extremely challenging - primarily because both experimental measurements on live creatures and the related computer analysis are quite complex.
In the study of fruit bat wings, researchers used experimental measurements of the movements of the bats' wings in real flight, and then used analysis software to see the direct relationship between wing motion and airflow around the bat wing.
"Bats have different wing shapes and sizes, depending on their evolutionary function. Typically, bats are very agile and can change their flight path very quickly - showing high maneuverability for midflight prey capture, so it's of interest to know how they do this," said Danesh Tafti, the William S Cross professor in the Department of Mechanical Engineering and director of the High Performance Computational Fluid Thermal Science and Engineering Lab at Virginia Tech.
Researchers found bats manipulated the wing motion with correct timing to maximise the forces generated by the wing.
"It distorts its wing shape and size continuously during flapping," Tafti noted.
For example, it increases the area of the wing by about 30 per cent to maximise favourable forces during the downward movement of the wing, and it decreases the area by a similar amount on the way up to minimise unfavourable forces.
The force coefficients generated by the wing are "about two to three times greater than a static airfoil wing used for large airplanes," said Kamal Viswanath, co-author of the study.
"Next, we'd like to explore deconstructing the seemingly complex motion of the bat wing into simpler motions, which is necessary to make a bat-inspired flying robot," he said.
"We'd also like to explore other bat wing motions, such as a bat in level flight or a bat trying to maneuver quickly to answer questions, including: What are the differences in wing motion and how do they translate to air movement and forces that the bat generates? And finally, how can we use this knowledge to control the flight of an autonomous flying vehicle?" Tafti added.
The findings are published in the journal Physics of Fluids.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 19 2014 | 3:56 PM IST

Next Story