Water starts to boil at a temperature of 100 degrees Celsius. Scientists have long known that when water is confined in very small spaces, its boiling and freezing points can change, usually dropping by abound 10 degrees Celsius.
Scientists, including Kumar Varoon Agrawal from Massachusetts Institute of Technology in the US, have found that water can freeze even at high temperatures that would normally set it boiling in carbon nanotubes whose inner dimensions are not much bigger than a few water molecules.
The finding might lead to new applications - such as, essentially, ice-filled wires - that take advantage of the unique electrical and thermal properties of ice while remaining stable at room temperature.
"If you confine a fluid to a nanocavity, you can actually distort its phase behaviour," said Michael Strano, professor at MIT, referring to how and when the substance changes between solid, liquid and gas phases.
Such effects were expected, but the enormous magnitude of the change, and its direction (raising rather than lowering the freezing point), were a complete surprise.
The way water's behaviour changes inside the tiny carbon nanotubes - structures the shape of a soda straw, made entirely of carbon atoms but only a few nanometres in diameter - depends crucially on the exact diameter of the tubes.
In the experiments, the nanotubes were left open at both ends, with reservoirs of water at each opening.
Even the difference between nanotubes 1.05 nanometres and 1.06 nanometres across made a difference of tens of degrees in the apparent freezing point, the researchers found. Such extreme differences were completely unexpected.
Part of the reason for that is many teams were not able to measure the exact sizes of their carbon nanotubes precisely, not realising that such small differences could produce such different outcomes, he added.
In fact, it's surprising that water even enters into these tiny tubes in the first place, Strano said.
Carbon nanotubes are thought to be hydrophobic, or water-repelling, so water molecules should have a hard time getting inside. The fact that they do gain entry remains a bit of a mystery, he said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
