Stem cell study could aid quest to combat range of diseases

Image
Press Trust of India London
Last Updated : Jun 03 2013 | 4:57 PM IST
Scientists have taken a vital step forward in understanding how cells from skin tissue can be reprogrammed to become stem cells, a study which could aid quest to combat a range of diseases.
The new research could pave the way to generate these stem cells efficiently to better understand and develop treatments for diseases such as multiple sclerosis, Parkinson's disease and muscular degeneration.
The study of how these cells - known as induced pluripotent stem cells (iPSCs) - were reprogrammed was led by the University of Edinburgh and is published in the journal 'Nature'.
Scientists found that the process by which iPSCs are created is not simply a reversal of how skin cells are generated in normal human development.
Researchers made the discovery by tracking the change of skin cells during the reprogramming process.
They say that their new insight will enable them to streamline the stem cell production process.
All cells in the human body begin life as a mass of cells, with the capacity to change into any specialised cell, such as skin or muscle cell.
By returning adult cells to this original state and recreating the cell type needed for treatment scientists hope to find ways of tackling diseases such as MS (multiple sclerosis), in which cells become faulty and need to be replaced.
Scientists have been able to create stem cells in this way since 2006 but, until now, it has not been clear how adult cells 'forget' their specialised roles to be reprogrammed by scientists.
Experts say that current methods of iPSCs production are time consuming and costly.
It takes around four weeks to make human stem cells and even then the process does not always work.
The finding may also shed light on how to create different cell types - like muscle or brain cells - that can be used to improve our understanding of diseases and treatment.
Keisuke Kaji, of the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said, "As exciting as this technology is, we still know very little about how cell reprogramming actually works. Using a new technique, we have improved our understanding of the process.
"Our work marks an exciting step towards ensuring that induced pluripotent stem cells technology will meet its full potential."
The study was funded by the European Research Council, the Medical Research Council, the Anne Rowling Regenerative Neurology Clinic and the Darwin Trust of Edinburgh.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 03 2013 | 4:57 PM IST

Next Story