Tiny particles may have huge impact on storms: study

Image
Press Trust of India New York
Last Updated : Jan 28 2018 | 1:30 PM IST
Tiny airborne particles can have a stronger influence on powerful storms than scientists previously predicted, a study has found.
The findings, published in the journal Science, describe the effects of aerosols, which can come from urban and industrial air pollution, wildfires and other sources.
While scientists have known that aerosols may play an important role in shaping weather and climate, the new study shows that the smallest of particles have an outsized effect.
Particles smaller than one-thousandth the width of a human hair can intensify storms, increase the size of clouds and cause more rain to fall.
"This result adds to our knowledge of the interactions between aerosols, clouds and precipitation. In areas where aerosols are otherwise limited, such as remote regions of the Amazon rainforest, ultrafine aerosol particles can have a surprisingly strong effect," said Zhanqing Li, from the University of Maryland in the US.
"This finding will help us better understand the physical mechanisms of cloud development and severe storm formation, which can help us develop better storm prediction methods," Li said.
The researchers studied the storm-creating capacity of ultrafine particles that measure less than 50 nanometers across. For reference, a typical human red blood cell is about 8,000 nanometers wide.
They showed how smaller particles can invigorate clouds in a much more powerful way than their larger counterparts when specific conditions are present.
In a warm and humid environment with no large particles to attract airborne moisture, water vapour can build up to extreme levels, causing relative humidity to spike well beyond 100 per cent, the researchers said.
While ultrafine particles are small in size, they can reach large numbers. These particles form many small droplets that quickly and efficiently draw excess water vapour from the atmosphere.
This enhanced condensation releases more heat, which makes the updrafts much more powerful, they said.
As more warm air is pulled into the clouds, more droplets are launched aloft, producing a runaway effect that results in stronger storms.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 28 2018 | 1:30 PM IST

Next Story