The findings, published in the journal Mucosal Immunology, highlights the potential to prevent obesity and diabetes by manipulating levels and ratios of gut bacteria, and modifying the chemical and biological pathways for metabolism-activating genes.
"This study adds to our understanding of how bacteria may cause obesity, and we found particular types of bacteria in mice that were strongly linked to metabolic syndrome," said David Hackam, surgeon-in-chief at Johns Hopkins Children's Center in the US.
Metabolic syndrome, a cluster of conditions including obesity around the waist, high blood sugar and increased blood pressure, is a risk factor for heart disease, stroke and diabetes.
While no precise cause for metabolic syndrome is known, previous studies of Toll-like receptor 4 (TLR4), a protein that receives chemical signals to activate inflammation, have suggested that TLR4 may be responsible in part for its development.
How and why TLR4 may be responsible for metabolic syndrome, however, has been unclear, said Hackam.
Compared to normal mice, those lacking TLR4 showed a series of symptoms consistent with metabolic syndrome, such as significant weight gain, increased body and liver fat, and insulin resistance.
The researchers then fed both groups of mice a high-fat diet composed of 60 per cent fat calories for 21 weeks to find out whether diet would affect the development of metabolic syndrome.
The genetically modified mice gained significantly more in weight and had greater body and liver fat than the normal mice.
Compared with normal mice, belly and small intestine fat was higher in mice lacking TLR4 only in the intestinal epithelium.
This provides further evidence that deleting TLR4 specifically from the intestinal epithelium is required for developing metabolic syndrome.
To investigate the role the bacterial makeup of the gut had on the mice, researchers administered antibiotics to the normal and TLR4 intestinal epithelium-deficient mice.
This demonstrates that bacterial levels can be manipulated to prevent the development of metabolic syndrome, researchers said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
