Ultra-thin carbon nanotubes can desalinate seawater

Image
Press Trust of India Washington
Last Updated : Aug 30 2017 | 5:22 PM IST
Scientists have developed carbon nanotubes over 50,000 times thinner than a human hair which can quickly and effectively separate salt from seawater, an advance that may help solve the global water crisis.
Increasing demands for fresh water pose a global threat to sustainable development, resulting in water scarcity for four billion people, researchers said.
Current water purification technologies can benefit from the development of membranes with specialised pores that mimic highly efficient and water selective biological proteins.
Scientists, including those from Northeastern University in the US, developed carbon nanotube pores that can exclude salt from seawater.
The team found that water permeability in carbon nanotubes (CNTs) with diameters of 0.8 nanometre significantly exceeds that of wider carbon nanotubes.
The nanotubes, hollow structures made of carbon atoms in a unique arrangement, are more than 50,000 times thinner than a human hair.
The super smooth inner surface of the nanotube is responsible for their remarkably high water permeability, while the tiny pore size blocks larger salt ions.
"We found that carbon nanotubes with diameters smaller than a nanometre bear a key structural feature that enables enhanced transport," said Ramya Tunuguntla, a postdoctoral researcher at Lawrence Livermore National Laboratory (LLNL) in the US.
"The narrow hydrophobic channel forces water to translocate in a single-file arrangement, a phenomenon similar to that found in the most efficient biological water transporters," said Tunuguntla.
Computer simulations and experimental studies of water transport through CNTs with diameters larger than one nanometre showed enhanced water flow, but did not match the transport efficiency of biological proteins and did not separate salt efficiently, especially at higher salinities.
The key breakthrough achieved by the LLNL team was to use smaller-diameter nanotubes that delivered the required boost in performance.
"Carbon nanotubes are a unique platform for studying molecular transport and nanofluidics," said Alex Noy principal investigator at LLNL.
"Their sub-nanometre size, atomically smooth surfaces and similarity to cellular water transport channels make them exceptionally suited for this purpose, and it is very exciting to make a synthetic water channel that performs better than nature's own," said Noy.
The research was published in the journal Science.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 30 2017 | 5:22 PM IST

Next Story