"In the past, if you wanted high energy, you would choose a non-aqueous lithium-ion battery, but you would have to compromise on safety," said Kang Xu, a lab fellow at the US Army Research Laboratory.
"If you preferred safety, you could use an aqueous battery such as nickel/metal hydride, but you would have to settle for lower energy," Xu said.
"Now, we are showing that you can simultaneously have access to both high energy and high safety," Xu said.
To solve this problem and make the leap from three volts to four, researchers designed a new gel polymer electrolyte coating that can be applied to the graphite or lithium anode.
This hydrophobic coating expels water molecules from the vicinity of the electrode surface and then, upon charging for the first time, decomposes and forms a stable interphase - a thin mixture of breakdown products that separates the solid anode from the liquid electrolyte.
"The key innovation here is making the right gel that can block water contact with the anode so that the water doesn't decompose and can also form the right interphase to support high battery performance," said Chunsheng Wang, professor at the University of Maryland in the UA.
The addition of the gel coating also boosts the safety advantages of the new battery when compared to standard non- aqueous lithium-ion batteries and boosts the energy density when compared to any other proposed aqueous lithium-ion batteries.
Unique to this one, however, is that even when the interphase layer is damaged (if the battery casing were punctured, for instance), it reacts slowly with the lithium or lithiated graphite anode, preventing the smoking, fire, or explosion that could otherwise occur if a damaged battery brought the metal into direct contact with the electrolyte.
Though the power and energy density of the new battery are suitable for commercial applications currently served by more hazardous non-aqueous batteries, certain improvements would make it even more competitive.
"Right now, we are talking about 50-100 cycles, but to compare with organic electrolyte batteries, we want to get to 500 or more," Wang said.
The researchers also note that the electrochemical manipulations behind the jump to four volts have importance within battery technology and beyond.
"This is the first time that we are able to stabilize really reactive anodes like graphite and lithium in aqueous media," said Xu.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
