World's most complex crystal simulated

Image
Press Trust of India Washington
Last Updated : Dec 26 2014 | 5:05 PM IST
US researchers have simulated the most complex crystal structure ever - an icosahedral quasicrystal.
The "icosahedral quasicrystal" simulated by researchers at the University of Michigan looks ordered to the eye, but has no repeating pattern.
At the same time, it's symmetric when rotated, like a soccer ball with five-fold and six-fold patches.
This property, called icosahedral symmetry, is frequently found on small scales around a single point. It's in virus shells or buckyballs - molecules of 60 carbon atoms. But it is forbidden in a conventional crystal.
Like trying to tile a bathroom floor with pentagons, icosahedra do not nicely fill space, said Michael Engel, a research investigator in the Department of Chemical Engineering and first author of a paper on the findings published in Nature Materials.
"An icosahedral quasicrystal is nature's way of achieving icosahedral symmetry in the bulk. This is only possible by giving up periodicity, which means order by repetition. The result is a highly complicated structure," Engel said.
Engineers are still searching for efficient ways to make icosahedral quasicrystals, commonly found in metal alloys, with other materials.
Due to their high symmetry under rotation, they can have a property called a "photonic band gap."
A photonic band gap occurs when the spacing between the particles is similar to that of light. Particles arranged in this way could trap and route light coming from all directions.
"If icosahedral quasicrystals could be made from nano- and micro-metre sized particles, they could be useful in a variety of applications including communication and display technologies, and even camouflage," said Sharon Glotzer, the Stuart W Churchill Collegiate Professor of Chemical Engineering at U-M.
The researchers said the most exciting aspect of the findings is the insight they provide into how icosahedral quasicrystals form.
"When researchers study quasicrystals in the lab, they typically lack direct information about where the atoms are. They look at how the materials scatter light to figure that out," Glotzer said.
"No one has ever gotten one with icosahedral symmetry to self-assemble thermodynamically in a computer model that's not built by hand, and researchers have been trying for decades," Glotzer said.
The simulation will allow researchers for the first time to observe how icosahedral symmetry develops.
The U-M simulation was done using only one type of particle, which is unique. Typically, two or even three atomic elements are required to achieve a quasicrystal structure.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 26 2014 | 5:05 PM IST

Next Story