Computer OS, short movie, other data successfully stored in DNA

They compressed the files into a master file, and then split data into short strings of binary code

Researchers looking for cancer maps in free-floating DNA
Press Trust of India New York
Last Updated : Mar 05 2017 | 5:29 PM IST
Scientists have successfully stored a computer operating system, a short movie along with other data in DNA, an advance that may usher the next generation of ultra-compact, biological storage devices which will last hundreds of thousands of years.

In a new study, researchers from Columbia University and the New York Genome Centre (NYGC) in the US showed that an algorithm designed for streaming video on a cellphone can unlock DNA's nearly full storage potential by squeezing more information into its four base nucleotides.

They also showed that the technology is extremely reliable.

DNA is an ideal storage medium because it is ultra-compact and can last hundreds of thousands of years if kept in a cool, dry place, as demonstrated by the recent recovery of DNA from the bones of a 430,000-year-old human ancestor found in a cave in Spain.

"DNA won't degrade over time like cassette tapes and CDs, and it won't become obsolete - if it does, we have bigger problems," said Yaniv Erlich from Columbia University.

Researchers chose six files to encode, or write, into DNA: a full computer operating system, an 1895 French film, Arrival of a train at La Ciotat, a $50 Amazon gift card, a computer virus, a Pioneer plaque and a 1948 study by information theorist Claude Shannon.

They compressed the files into a master file, and then split the data into short strings of binary code made up of ones and zeros.

Using an erasure-correcting algorithm called fountain codes, they randomly packaged the strings into so-called droplets, and mapped the ones and zeros in each droplet to the four nucleotide bases in DNA: A, G, C and T.

The algorithm deleted letter combinations known to create errors and added a barcode to each droplet to help reassemble the files later.

The researchers showed that their coding strategy packs 215 petabytes of data on a single gram of DNA, which according to Erlich was the highest-density data-storage device ever created.

"We believe this is the highest-density data-storage device ever created," said Erlich.

The study was published in the journal Science.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 05 2017 | 5:26 PM IST

Next Story