Researchers at RMIT University in Melbourne, Australia, have developed the first low-cost and reliable method of detecting nitrogen dioxide (NO2).
NO2 is considered a significant air pollutant that contributes to more than seven million deaths worldwide each year, according to the World Health Organisation (WHO).
Also Read
Project leader Professor Kourosh Kalantar-zadeh, from RMIT's Centre for Advanced Electronics and Sensors, said the negative impact of nitrogen dioxide could be prevented by access to personalised, highly selective, sensitive and reliable monitoring systems that could detect harmful levels of the gas early.
"The revolutionary method we've developed is a great start to creating a handheld, low-cost and personalised NO2 sensor that can even be incorporated into smartphones," Kalantar-zadeh said.
"Not only would it improve the quality of millions of people's lives, but it would also help avoid illness caused by nitrogen dioxide poisoning and potentially even death," Kalantar-zadeh said.
The main contributors of nitrogen dioxide are the burning of fossil fuels, particularly in coal-fired power stations and diesel engines, which can impact on the health of people in urban areas.
"A lack of public access to effective monitoring tools is a major roadblock to mitigating the harmful effects of this gas but current sensing systems are either very expensive or have serious difficulty distinguishing it from other gases," Kalantar-zadeh said.
"The method we have developed is not only more cost-effective, it also works better than the sensors currently used to detect this dangerous gas," he said.
Kalantar-zadeh developed the new method for sensing nitrogen dioxide together with fellow RMIT researchers and colleagues from the Chinese Academy of Sciences.
The sensors, which operate by physically absorbing nitrogen dioxide gas molecules onto flakes of tin disulphide, not only increase the level of sensitivity to accepted EPA standards, but outperform any other nitrogen dioxide sensing solutions on the market.
Tin disulphide is a yellowish-brown pigment generally used in varnish for gilding. To create sensors, researchers transformed this material into flakes just a few atoms thick.
The large surface area of these flakes has a high affinity to nitrogen dioxide molecules that allows its highly selective absorption.
The study is published in the journal ACS Nano.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)