How Zika virus replicates unraveled

Image
ANI Washington D.C
Last Updated : Jul 27 2016 | 12:28 PM IST

A team of researchers has cracked open the mystery of Zika virus replication.

According to researchers from Tianjin University and Nankai University, all viruses seem to need a helicase for replication. The Zika virus helicase is a motor enzyme that converts energy from nucleoside triphosphate to unwind and separate double-stranded nucleic acids, so the single-stranded genetic material can then be copied. This is an essential step for viral replication.

Using X-ray crystallography, a method that generates 3-D pictures of proteins at the atomic level, the scientists watched what happens when the Zika virus helicase begins to perform its function and encounters its substrates.

By doing so, they have successfully captured the snapshot of the intermediate state where the viral helicase exactly binds to the nucleoside triphosphate ATP and a metal ion, two essential molecules required for the helicase to do its job.

This is the first structure of any helicase bound to ATP from flaviviruses, a group including other well-known pathogens such as dengue, yellow fever, and West Nile viruses.

Scientists are most curious about what makes Zika virus different from other flaviviruses. So they have solved the structure of the Zika virus helicase bound to a strand of its genomic RNA as well, which identifies a tunnel running through the whole enzyme to hold the viral RNA.

The scientists were most surprised by the fact that the Zika virus helicase undergoes significant conformational change when encountering its genomic RNA. However, this alteration is distinct from the dengue virus helicase, which has demonstrated a very different way to bind its genomic RNA.

The scientists suggest that flavivirus helicases could have evolved a conserved motor to convert chemical energy from nucleoside triphosphate to mechanical energy to unwind their genetic material, but the motors of the flaviviruses move in distinct ways to access their genomic RNA.

Understanding this critical step of Zika virus replication will help researchers develop antiretroviral drugs against this spreading disease afflicting the entire globe.

The study is published in Springer's journal Protein and Cell.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 27 2016 | 12:28 PM IST

Next Story