What is the similarity between 'Yin and yang' switch, animal stem cells?

Image
ANI Washington D.C.
Last Updated : Aug 10 2016 | 2:22 PM IST

A study says that a molecular switch that flips between different versions of genes could be crucial for maintaining stem cells across all animals from simple flatworms to humans.

The study at Center for Genomic Regulation says that flatworms (also known as planarians) have an incredible capacity for self-renewal, with almost any part of their body able to regenerate a whole new worm in a matter of days.

The researchers found that they 'mix and match' certain parts of their genes in particular ways - a process known as alternative splicing. The same analysis of flatworm cells that had changed into more specific cell types revealed a different mixture of gene parts.

Looking more closely, the team discovered that two families of molecules - CELF and MBNL - work as a kind of 'yin and yang' switch, enabling cells to flip between different patterns of alternative splicing. CELF molecules guide gene splicing patterns linked to self-renewal of stem cells, while MBNL factors favour differentiation.

The study builds on Irimia's previous research showing that MBNL proteins and alternative splicing patterns are important in human and mouse embryonic stem cells as they differentiate into other cell types.

Previously, scientists have discovered certain proteins, known as transcription factors that are important for maintaining embryonic stem cells in mammals.

However, these particular molecules do not play the same roles in the stem cells of invertebrate organisms such as flatworms, which split off from the ancestors of mammals around 600 million years ago, suggesting that they are quite new in evolutionary terms.

"Discovering that this kind of alternative splicing mechanism exists across such a wide evolutionary range suggests that it is very ancient, and may be equally important as transcription factors for giving animal stem cells their unique properties" said lead researcher Manuel Irimia.

"Furthermore, understanding how this 'yin and yang' switch is flipped and activates particular patterns of alternative splicing could one day lead to more improved methods for generating and differentiating stem cells, which could be used be used for regenerative medicine," Irimia added.

The study has been published in eLife.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 10 2016 | 2:22 PM IST

Next Story