Scientists find new clues in turtle evolution

Image
IANS New York
Last Updated : Sep 03 2015 | 2:57 PM IST

A 260-million-year-old fossil species found in South Africa's Karoo basin has shed new light on the murky origins of turtles.

The extinct reptile, named "Eunotosaurus africanus", is being touted by researchers as the earliest known branch of the turtle tree of life.

"Eunotosaurus is a critical link connecting modern turtles to their evolutionary past," said lead researcher Gaberiel Bever from New York Institute of Technology (NYIT).

"This is the fossil for which science has been searching for more than 150 years. You can think of it as a turtle, before turtles had a shell," Bever said.

While Eunotosaurus lacks the iconic turtle shell, its extremely wide ribs and distinctively circular torso are the first indications that this fossil represents an important clue in a long unsolved mystery - the origin of turtles.

One of the study's key findings is that the skull of Eunotosaurus has a pair of openings set behind the eyes that allowed the jaw muscles to lengthen and flex during chewing.A

Known as the diapsid condition, this pair of openings is also found in lizards, snakes, crocodilians and birds.

The skull of modern turtles is anapsid - without openings with the chamber housing the jaw muscles fully enclosed by bone.

The anapsid-diapsid distinction strongly influenced the long-held notion that turtles are the remnants of an ancient reptile lineage and not closely related to modern lizards, crocodiles, and birds.

The new data from Eunotosaurus rejects this hypothesis.

"If turtles are closely related to the other living reptiles then we would expect the fossil record to produce early turtle relatives with diapsid skulls," Bever explained.

"That expectation remained unfulfilled for a long time, but we can now draw the well-supported and satisfying conclusion that Eunotosaurus is the diapsid turtle," he added.

The skull of Eunotosaurus grows in such a way that its diapsid nature is obvious in juveniles but almost completely obscured in adults, researchers said.

"If that same growth trajectory was accelerated in subsequent generations, then the original diapsid skull of the turtle ancestor would eventually be replaced by an anapsid skull, which is what we find in modern turtles," Bever said.

The findings were published in the journal, Nature.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 03 2015 | 2:42 PM IST

Next Story