Researchers including one of Indian origin from the US Department of Energy's Berkeley Lab have engineered a strain of bacteria that enables a "one-pot" method for producing advanced biofuels from a slurry of pre-treated plant material.
The Escherichia coli (E coli) is able to tolerate the liquid salt used to break apart plant biomass into sugary polymers.
Developing ionic-liquid-tolerant bacteria eliminates the need to wash away the residual ionic liquid.
The achievement is a critical step in making biofuels a viable competitor to fossil fuels because it helps streamline the production process.
Being able to put everything together at one point, walk away, come back and then get your fuel, is a necessary step in moving forward with a biofuel economy," said principal investigator Aindrila Mukhopadhyay, vice president of the fuels' synthesis division at the Joint BioEnergy Institute (JBEI), Berkeley Lab.
"The E coli we've developed gets us closer to that goal. It is like a chassis that we build other things onto, like the chassis of a car. It can be used to integrate multiple recent technologies to convert a renewable carbon source like switchgrass to an advanced jet fuel," he added.
The basic steps of biofuel production start with deconstructing, or taking apart, the cellulose, hemicellulose and lignin that are bound together in the complex plant structure.
Enzymes are then added to release the sugars from that gooey mixture of cellulose and hemicellulose, a step called saccharification.
Bacteria can then take that sugar and churn out the desired biofuel.
The multiple steps are all done in separate pots.
Researchers pioneered the use of ionic liquids - salts that are liquid at room temperature - to tackle the deconstruction of plant material because of the efficiency with which the solvent works.
E. coli remains the workhorse microbial host in synthetic biology and in the new study, using the ionic-liquid-tolerant E. coli strain, we can combine many earlier discoveries to create an advanced biofuel in a single pot," the authors noted.
"Ultimately, we hope to develop processes that are robust and simple where one can directly convert any renewable plant material to a final fuel in a single pot," Mukhopadhyay noted in a paper published in the journal Green Chemistry.
--IANS
na/bg
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
