Cucumbers feature specialised protuberances, or pegs, whose formation is regulated by gravity.
These pegs form during the plant's early growth stage to help the seedlings emerge from their hard seed coat and anchor the developing plant in the soil while its roots form.
When seeds are placed before germination either in a vertical position with their embryonic roots pointing down or subjected to microgravity conditions, a peg develops on each side, said Hideyuki Takahashi from Tohoku University in Japan.
Using samples grown on board the ISS, researchers highlight the valuable contribution of the gravity-sensitive CsPIN1 protein to this process.
The role of the protein in facilitating the transport of the growth hormones had first been suggested in previous experiments conducted on Earth.
To gain further insight, researchers loaded cucumber seeds into specially designed canisters, which were sent up to ISS.
Water-absorbent plastic foam in the container was irrigated and the now-germinating seedlings were grown in the microgravity compartment of the cell biology experiment facility for 24 hours.
One of the big challenges facing the team was finding a suitable fixative to "freeze" the status of the seedlings germinated on the space station so that the samples could be analyzed in detail back on Earth.
Safety regulations on the space station prohibited the use of the standard fixing solution of ethanol, chloroform and acetic acid, but after much testing, scientists developed an alternative based on a mixture of acetic acid, ethanol and distilled water.
Researchers then used a staining technique to pinpoint changes in cellular behaviour induced by gravi-stimulation.
The change in the position of protein was found to occur in the transition zone of the cucumber seedling - the area between the stem and the roots - where the pegs develop.
It appears that this behaviour stimulates the formation of a cellular canal capable of transporting growth hormones from one side of this zone to the other, researchers said.
The findings point towards the mechanism by which the seeds are able to turn on and off the growth of their anchoring pegs in relation to their orientation with respect to gravity.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
