Deep space travel may damage astronauts' gut function

Image
Press Trust of India Washington
Last Updated : Oct 03 2018 | 3:55 PM IST

Deep space travel, such as a journey to Mars, can significantly damage the gastrointestinal (GI) tissue of astronauts, and raise the risk of stomach and colon tumours, according to scientists including one of Indian origin.

Simulations with animal models that mirror galactic cosmic radiation exposure to astronauts are raising red flags for the researchers at Georgetown University in the US about the health of astronauts.

The study, published in the journal PNAS, suggests that deep space bombardment by galactic cosmic radiation (GCR) could significantly damage gastrointestinal (GI) tissue leading to long-term functional alterations.

Their previous work has highlighted potential impairment to brain tissue as well as accelerated aging on long space trips due to the effect of energetic heavy ions, which do not affect Earthlings due to the protective global magnetosphere.

"Heavy ions such as iron and silicon are damaging because of their greater mass compared to no-mass photons such as X-rays and gamma-rays prevalent on earth as well as low mass protons in outer space," said Kamal Datta, an associate professor at the NASA Specialised Center of Research (NSCOR).

"With the current shielding technology, it is difficult to protect astronauts from the adverse effects of heavy ion radiation," said Datta.

"Although there may be a way to use medicines to counter these effects, no such agent has been developed yet," he said.

"While short trips, like the times astronauts travelled to the Moon, may not expose them to this level of damage, the real concern is lasting injury from a long trip such as a Mars or other deep space missions which would be much longer," he said.

The GI tract is a self-renewing tissue with continuous cell division or proliferation, researchers said.

The top layer of cells is replaced every three to five days through coordinated migration of new cells from the bottom of a flask shaped structure called crypt towards the lumen of the gut.

"Any disturbance of this replacement mechanism leads to malfunctioning of physiologic processes such as nutrient absorption and starts pathologic processes such as cancer," said Albert Fornace, director of the NSCOR.

To investigate the effect of heavy ions on the GI tract, the scientists used mouse small intestine as a model system. The mice were exposed to a low dose of iron radiation at the NASA Space Radiation Laboratory (NSRL).

Researchers compared the group of mice that received heavy ions to mice exposed to gamma rays, which are comparable to X-rays, and to a third, unexposed control group.

The scientists found that intestinal cells in the heavy ion group did not adequately absorb nutrients and that they formed cancerous polyps.

Additionally, there was evidence that iron radiation induced DNA damage that increased the number of senescent cells. Senescent cells are incapable of normal cell division but they are not "quiet," said Datta.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 03 2018 | 3:55 PM IST

Next Story