First 50 retweets can tell if a tweet will go viral

Image
Press Trust of India Beijing
Last Updated : Apr 18 2019 | 3:40 PM IST

Estimating how infectious a tweet is from the first 50 retweets is the key to predicting whether a post will go viral or not, a study has found.

As online social networks and media continue to grow, so has the importance of understanding how they influence our thoughts and opinions, said researchers from Beihang University in China.

Being able to predict the spread of social contagions is considered a key goal for those social information networks, according to the study published in the journal PLOS ONE.

Although models developed in the field of infectious diseases have been used to describe the spread of ideas, studies have not used real data to estimate how infectious the information is.

Researchers used about one month of Twitter data -- comprising over 12 million tweets and more than 1.5 million retweets -- and estimated each tweet's infectivity based on the network dynamics of the first 50 retweets associated with it.

They incorporated the infectivity estimates into a model with a decay constant that captures the gradual decline in interest as online information ages.

Using real data and simulations, the researchers tested the ability of the infectivity-based model to predict the virality of retweet cascades.

They compared its performance to that of the standard community model, which incorporates other predictive factors -- such as social reinforcement and trapping effects that act to keep tweet cascades within small communities of connected users.

The researchers found that for both real Twitter data and simulated data, the infectivity model performed better than the community model, indicating that infectivity is a larger driving force in determining whether a tweet goes viral.

Combining the two models into a hybrid community, infectivity model yielded the most accurate predictions, highlighting the complexity of the interacting forces that determine the life and death of social network information.

"We propose a simulation model using Twitter data to show that infectivity, which reflects the intrinsic interestingness of an information cascade, can substantively improve the predictability of viral cascades," researchers said.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 18 2019 | 3:40 PM IST

Next Story