Gene that regenerates heart tissue identified

Image
Press Trust of India Washington
Last Updated : Apr 18 2013 | 5:20 PM IST
Scientists have identified a specific gene that regulates the heart's ability to regenerate after injuries.
Researchers at University of Texas Southwestern Medical Center identified the previously unknown function of the gene, called Meis1, in the heart.
"We found that the activity of the Meis1 gene increases significantly in heart cells soon after birth, right around the time heart muscle cells stop dividing," said Dr Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and senior author of the study.
"Based on this observation we asked a simple question: If the Meis1 gene is deleted from the heart, will heart cells continue to divide through adulthood? The answer is 'yes'," Sadek said.
In 2011, Sadek's laboratory showed that the newborn mammalian heart is capable of a vigorous, regenerative response to injury through division of its own cells.
As the newborn develops, the heart rapidly loses the ability to regenerate and to repair injuries such as heart attacks.
The research team demonstrated that deletion of Meis1 extended the proliferation period in the hearts of newborn mice, and also re-activated the regenerative process in the adult mouse heart without harmful effect on cardiac functions.
The new finding demonstrates that Meis1 is a key factor in the regeneration process, and the understanding of the gene's function may lead to new therapeutic options for adult heart regeneration.
The findings also provide a possible alternative to current adult heart regeneration research, which focuses on the use of stem cells to replace damaged heart cells.
"Meis1 is a transcription factor, which acts like a software programme that has the ability to control the function of other genes. In this case, we found that Meis1 controls several genes that normally act as brakes on cell division," Sadek said.
"As such, Meis1 could possibly be used as an on/off switch for making adult heart cells divide. If done successfully, this ability could introduce a new era in treatment for heart failure," Sadek said.
The study was published in journal Nature.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 18 2013 | 5:20 PM IST

Next Story