In vitro blood cells could reduce need for donation

Image
Press Trust of India Boston
Last Updated : Jun 01 2013 | 2:36 PM IST
Researchers have identified a novel approach to create an unlimited number of human red blood cells and platelets in vitro, a key finding that could reduce need for blood donations.
A study led by Boston University School of Medicine researchers has differentiated induced pluripotent stem (iPS) cells into these cell types, which are typically obtained through blood donations.
This finding could potentially reduce the need for blood donations to treat patients requiring blood transfusions and could help researchers examine novel therapeutic targets to treat a variety of diseases, including sickle cell disease.
IPS cells are derived by reprogramming adult cells into a primitive stem cell state that are capable of differentiating into different types of cells.
These cells can be generated from mature somatic cells, such as skin or blood cells, allowing for the development of patient-specific cells and tissues that should not elicit inappropriate immune responses, making them a powerful tool for biological research and a resource for regenerative medicine.
In this study, the iPS cells were obtained from a Cell Bank. The cells were exposed to growth factors in order to coax them to differentiate into red blood cells and platelets using a patented technology. These stem cells were examined in depth to study how blood cells form in order to further the understanding of how this process is regulated in the body.
In their new approach, the team added compounds that modulate the aryl hydrocarbon receptor (AhR) pathway. Previous research has shown this pathway to be involved in the promotion of cancer cell development via its interactions with environmental toxins.
In this study, however, the team noted an exponential increase in the production of functional red blood cells and platelets in a short period of time, suggesting that AhR plays an important role in normal blood cell development.
"This finding has enabled us to overcome a major hurdle in terms of being able to produce enough of these cells to have a potential therapeutic impact both in the lab and, down the line, in patients," said George J Murphy, assistant professor of medicine at BUSM and co-director of the Center for Regenerative Medicine (CReM).
The study was published in the journal Blood.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 01 2013 | 2:36 PM IST

Next Story