The solar event on September 11 sparked an aurora more than 25 times brighter than any previously seen by the MAVEN orbiter, which has been studying the Martian atmosphere's interaction with the solar wind since 2014.
It produced radiation levels on the surface more than double any previously measured by the Curiosity rover's Radiation Assessment Detector (RAD) since that mission's landing in 2012. The high readings lasted more than two days.
Also Read
Strangely, it occurred in conjunction with a spate of solar activity during what is usually a quiet period in the Sun's 11-year sunspot and storm-activity cycle.
This event was big enough to be detected at Earth too, even though Earth was on the opposite side of the Sun from Mars.
"The current solar cycle has been an odd one, with less activity than usual during the peak, and now we have this large event as we're approaching solar minimum," said Sonal Jain of the University of Colorado Boulder's Laboratory for Atmospheric and Space Physics, who is a member of MAVEN's Imaging Ultraviolet Spectrograph instrument team.
"This is exactly the type of event both missions were designed to study, and it's the biggest we've seen on the surface so far," said RAD Principal Investigator Don Hassler of the Southwest Research Institute in the US.
"It will improve our understanding of how such solar events affect the Martian environment, from the top of the atmosphere all the way down to the surface," Hassler said.
RAD monitored radiation levels inside the encapsulated spacecraft that carried Curiosity from Earth to Mars in 2011 and 2012 and has been steadily monitoring the radiation environment at Mars' surface for more than five years.
RAD findings strengthen understanding of radiation's impact on Mars habitability, a key objective of the Curiosity mission.
NASA is also using RAD findings for planning the safety of human-crew missions to Mars.
Highly energetic solar events can significantly increase the radiation that penetrates through the atmosphere to the Mars surface.
The increased radiation also interacts with the atmosphere to produce additional, secondary particles, which need to be understood and shielded against to ensure the safety of future human explorers.
"If you were outdoors on a Mars walk and learned that an event like this was imminent, you would definitely want to take shelter, just as you would if you were on a space walk outside the International Space Station," Hassler said.
"To protect our astronauts on Mars in the future, we need to continue to provide this type of space weather monitoring there," he said.
(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)