New artificial muscles can lift 12,600 times their weight

Image
Press Trust of India Washington
Last Updated : Apr 18 2018 | 2:50 PM IST

Scientists have designed new carbon fibre-based artificial muscles capable of lifting up to 12,600 times their own weight.

The strong muscles are made from carbon fibre-reinforced siloxane rubber and have a coiled geometry.

When electrically actuated, the artificial muscles show excellent performance without requiring a high input voltage, according to the study published in the journal Smart Materials and Structures.

The researchers showed how a 0.4 milimetre (mm) diameter muscle bundle is able to lift half a gallon of water by 1.4 inches with only 0.172 volt/centimetre (V/cm) applied voltage.

"The range of applications of these low cost and light weight artificial muscles is really wide and involves different fields such as robotics, prosthetics, orthotics, and human assistive devices," said Caterina Lamuta, a postdoctoral fellow at University of Illinois at Urbana-Champaign in the US.

"The mathematical model we proposed is a useful design tool to tailor the performance of coiled artificial muscles according to the different applications," said Lamuta.

The artificial muscles themselves are coils comprised of commercial carbon fibres and polydimethylsiloxane (PDMS).

A carbon fibres tow is initially dipped into uncured PDMS diluted with hexane and then twisted with a simple drill to create a yarn with a homogeneous shape and a constant radius.

After the curing of the PDMS, the straight composite yarn is highly twisted until it is fully coiled.

The team set a target of transforming carbon fibres, a very strong lightweight material which is readily commercially available, into artificial muscles.

"We simply filled carbon fibre tows with the suitable type of silicone rubber, and their performance was impressive, precisely what we had aimed for," said Sameh Tawfick, an assistant professor at University of Illinois.

The study demonstrates that muscle contraction is caused by an increase in the radius of the muscle yarn due to thermal expansion or solvent absorption of the silicone filing.

"The muscles flex when the silicone rubber locally pushes the fibres apart within the tow, by applying a voltage, heat or swelling by a solvent," said Tawfick.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 18 2018 | 2:50 PM IST

Next Story