New smartphone app detects mood swings via voice analysis

Image
Press Trust of India Washington
Last Updated : May 09 2014 | 1:39 PM IST
A new smartphone app monitors subtle qualities of a person's voice during everyday phone conversations to detect early signs of mood changes in people with bipolar disorder, scientists, including one of Indian-origin, say.
Researchers from the University of Michigan said while the app still needs much testing before widespread use, early results from a small group of patients show its potential to monitor moods while protecting privacy.
The researchers hope the app will eventually give people with bipolar disorder and their health care teams an early warning of the changing moods that give the condition its name.
The app runs in the background on an ordinary smartphone, and automatically monitors the patients' voice patterns during any calls made as well as during weekly conversations with a member of the patient's care team.
The computer programme analyses many characteristics of the sounds - and silences - of each conversation.
Only the patient's side of everyday phone calls is recorded - and the recordings themselves are encrypted and kept off-limits to the research team.
They can see only the results of computer analysis of the recordings, which are stored in secure servers that comply with patient privacy laws.
Standardised weekly mood assessments with a trained clinician provide a benchmark for the patient's mood, and are used to correlate the acoustic features of speech with their mood state.
Because other mental health conditions also cause changes in a person's voice, the same technology framework developed for bipolar disorder could prove useful in everything from schizophrenia and post-traumatic stress disorder to Parkinson's disease, the researchers said.
The U-M team was led by computer scientists Zahi Karam and Emily Mower Provost and psychiatrist Melvin McInnis. The study also included Satinder Singh, an artificial intelligence and machine learning expert.
"These pilot study results give us preliminary proof of the concept that we can detect mood states in regular phone calls by analysing broad features and properties of speech, without violating the privacy of those conversations," said Karam, a postdoctoral fellow and specialist in machine learning and speech analysis.
"As we collect more data the model will become better, and our ultimate goal is to be able to anticipate swings, so that it may be possible to intervene early," Karam said.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 09 2014 | 1:39 PM IST

Next Story