New 'spermbots' to boost fertility treatments

Image
Press Trust of India Berlin
Last Updated : Jan 14 2016 | 3:13 PM IST
Scientists have developed motorised 'spermbots' by attaching tiny metal helices to sperm cells that can aid poor swimmers to reach an egg, an advance that could improve fertility treatments.
In the artificially motorised sperm cells, customised microhelices serve as motors for transporting sperm cells with motion deficiencies to help them carry out their natural function.
"Our results indicate that metal-coated polymer microhelices are suitable for this task due to potent, controllable, and non-harmful 3D motion behaviour," researchers said.
Sperm that do not swim well rank high among the main causes of infertility. To give these cells a boost, women trying to conceive can turn to artificial insemination or other assisted reproduction techniques, but success can be elusive.
Artificial insemination is a relatively inexpensive and simple technique that involves introducing sperm to a woman's uterus with a medical instrument.
Overall, the success rate is on average under 30 per cent, according to the Human Fertilisation and Embryology Authority of the UK.
In vitro fertilisation can be more effective, but it is a complicated and expensive process. It requires removing eggs from a woman's ovaries with a needle, fertilising them outside the body and then transferring the embryos to her uterus or a surrogate's a few days later. Each step comes with a risk for failure.
Researchers from the Institute for Integrative Nanosciences at IFW Dresden in Germany wanted to see if they could come up with a better option than the existing methods.
Building on previous work on micromotors, the researchers constructed tiny metal helices just large enough to fit around the tail of a sperm. Their movements can be controlled by a rotating magnetic field.
Lab testing showed that the motors can be directed to slip around a sperm cell, drive it to an egg for potential fertilisation and then release it.
The researchers say that although much more work needs to be done before their technique can reach clinical testing, the success of their initial demonstration is a promising start.
"Our results indicate that metal-coated polymer microhelices are suitable for this task due to potent, controllable, and non-harmful 3D motion behaviour," researchers wrote in the study published in the journal Nano Letters.
"We manage to capture, transport, and release single immotile live sperm cells in fluidic channels that allow mimicking physiological conditions," they wrote.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 14 2016 | 3:13 PM IST

Next Story