Scientists have developed a software that can quickly process real-time data and predict where illegal activities are likely to occur, giving police departments the upper hand in their fight against crime.
Police departments across the world are facing increasing pressures on their resources, a reality that is fuelling the growth of predictive policing software that helps authorities make decisions on where to focus their efforts.
One popular method is to fit an Epidemic Type Aftershock Sequence (ETAS) model to urban crime data - a grid-map-based approach that has been able to predict two times as much crime as a single dedicated analyst.
Researchers from University of Surrey and Georgia Institute of Technology in the US detail a new approach similar to that used in weather forecasting and the Apollo space missions, which supplements ETAS.
Researchers were able to use this approach to develop a novel algorithm - the Ensemble Poisson Kalman Filter (EnPKF) - that is able to combine, in real-time, urban crime data and the ETAS model.
EnPKF is able to provide real-time forecasts for the crime rate and give an indication to how likely crime could repeat in a certain area.
The algorithm can also give police departments suggestions as to where short-term crime hotspots could arise, and what additional resources are needed to address such a rise.
Mathematicians tested their algorithm against data on more than 1,000 violent gang crimes in Los Angeles, from 1999 until 2002 - a dataset that features 33 known gangs.
Researchers believe that the algorithm has a wide range of possible uses as the EnPKF can make forecasts using models other than ETAS.
It is thought that EnPKF can be used to monitor train delays, earthquake aftershocks and even insurance claims in sub-Saharan Africa.
"We are cautiously excited about the Ensemble Poisson Kalman Filter, an approach that has given us an insight into when crime can be predicted, and has shown us the importance of using real-time data to make the overall system stronger," said David Lloyd from University of Surrey.
"We are already well on our way to strengthening the algorithm and have event tested it against data from Chicago," said Lloyd.
"It is important to remember that EnPKF, and algorithms similar to this, are tools used to help our law enforcement who work hard to keep our communities safe. Their use will ultimately be determined by the needs of individual departments," he said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
