Physicists create reversible laser tractor beam

Image
Press Trust of India Melbourne
Last Updated : Oct 20 2014 | 4:41 PM IST
Laser physicists in Australia have built a tractor beam that can repel and attract objects across distances 100 times farther than previously possible.
Researchers at the Australian National University (ANU) developed the first long-distance optical tractor beam which moved particles one fifth of a millimetre in diameter a distance of up to 20 centimetres.
This is around 100 times farther than previous experiments.
"Demonstration of a large scale laser beam like this is a kind of holy grail for laser physicists," said Professor Wieslaw Krolikowski, from the Research School of Physics and Engineering.
The new technique is versatile because it requires only a single laser beam. It could be used, for example, in controlling atmospheric pollution or for the retrieval of tiny, delicate or dangerous particles for sampling.
The researchers can also imagine the effect being scaled up.
"Because lasers retain their beam quality for such long distances, this could work over metres. Our lab just was not big enough to show it," said co-author Dr Vladlen Shvedov, who worked on the ANU project, along with Dr Cyril Hnatovsky.
Unlike previous techniques, which used photon momentum to impart motion, the ANU tractor beam relies on the energy of the laser heating up the particles and the air around them.
The ANU team demonstrated the effect on gold-coated hollow glass particles.
The particles are trapped in the dark centre of the beam. Energy from the laser hits the particle and travels across its surface, where it is absorbed creating hotspots on the surface.
Air particles colliding with the hotspots heat up and shoot away from the surface, which causes the particle to recoil, in the opposite direction.
To manipulate the particle, the team moves the position of the hotspot by carefully controlling the polarisation of the laser beam.
"We have devised a technique that can create unusual states of polarisation in the doughnut shaped laser beam, such as star-shaped (axial) or ring polarised (azimuthal)," Hnatovsky said.
"We can move smoothly from one polarisation to another and thereby stop the particle or reverse its direction at will," Hnatovsky said.
The study is published in the journal Nature Photonics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 20 2014 | 4:41 PM IST

Next Story