Robotic device may help restore movement in stroke patients

Image
Press Trust of India Seoul
Last Updated : Jun 11 2017 | 3:28 PM IST
Scientists have developed a new robotic tool that can help restore movement in paralysed patients, such as those who have survived stroke.
The rehabilitation robotic system, developed at Ulsan National Institute of Science and Technology (UNIST) in South Korea, measures the 3 degree-of-freedom (DOF) impedance of human forearm and wrist in minutes.
Using the device, called the distal internal model based impedance control (dIMBIC)-based method, the team was able to accurately characterise the 3 DOF forearm and wrist impedance, including inertia, damping, and stiffness, for the first time.
Combined with standard rehabilitation, the robotic- assisted rehabilitation therapy is expected to improve the mobility of stroke patients.
Stroke, known as a leading cause of long-term disability, is a sudden loss of brain function, caused by the interruption of blood flow to the brain or the rupture of a blood vessels in the brain and an estimated 150,000 people die from it, each year.
As a consequence of stroke, stroke survivors are often left with muscle overactivity, including spasticity.
Spasticity is a muscle control disorder that is characterised by tight or stiff muscles and an inability to control those muscles.
It is often manifested by increased stretch reflex activity and mechanical joint resistance.
"The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke," said Sang Hoon Kang at UNIST.
"Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals, as well as in nursing homes and assisted living facilities," he said.
The research team expects that, in the long run, the proposed 3 DOF impedance estimation may promote wrist and forearm motor control studies and complement the diagnosis of the alteration in wrist and forearm resistance post-stroke by providing objective impedance values including cross-coupled terms.
The study was published in the journal IEEE Transactions on Neural Systems.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 11 2017 | 3:28 PM IST

Next Story