Most lenses, objectives, eyeglass lenses and lasers come with an anti-reflective coating. However, this coating works optimally only within a narrow wavelength range.
Now, scientists at Max Planck Institute for Intelligent Systems in Germany have introduced an alternative technology.
Instead of coating a surface, they manipulate the surface itself. By comparison with conventional procedures, this provides the desired anti-reflective effect across a wider wavelength range.
It largely increases the light transmittance through surfaces. In the future, the nanostructured surfaces may improve high-energy lasers as well as touch-screens and the output of solar modules, researchers said.
There is no glow of light bouncing off the moth's eyes to betray their presence to potential predators. Less reflected light also means that moths are able to use practically all the scarce night-time light to see.
This magic from the world of insects inspired scientists to try the same tactics for the design of optical components. Like the corneas of moths, the components must allow light to pass through while light reflection is of little use.
The columns look like regularly spaced stalagmites on a cavern floor. As the light passes through this boundary layer, its refractive index changes continuously, starting from the ambient air to the materials of the outer moth eye layers.
This gradual refractive index change has the effect that the layer hardly reflects any of the incoming light.
To imitate the moth eye principle, scientists developed a two-step process.
In the first step, they deposited gold particles in a regular honeycomb pattern on a large surface. In this pattern, the gold particles settle in the points of crossroad.
While this technique registered first successes in the past, it has so far only worked for short wave UV radiation and visible light, researchers said.
Until then, the columns etched out of the surface were at most 500 nanometres high. The columns are not high enough to reach the 99.5 per cent or higher light transmittance for the wavelengths in the near infrared light (NIR) range.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
