Study finds 'robust' evidence that COVID-19 is seasonal infection

Higher transmission rates were associated with lower temperatures and humidity, the report said.

China Health Workers, Covid-19 pandemic, Coronavirus
Coronavirus
Press Trust of India London
4 min read Last Updated : Oct 26 2021 | 1:38 PM IST

COVID-19 may be a seasonal infection linked to low temperatures and humidity, much like seasonal influenza, according to new "robust" evidence found by researchers.

The study, recently published in the journal Nature Computational Science, also supports the considerable contribution of airborne SARS-CoV-2 transmission and the need to shift to measures that promote "air hygiene."

A research team led by the Barcelona Institute for Global Health (ISGlobal), Spain, noted that a key question regarding SARS-CoV-2 is whether it is behaving, or will behave, as a seasonal virus like influenza, or whether it will be equally transmitted during any time of the year.

A first theoretical modelling study suggested that climate was not a driver in COVID-19 transmission, given the high number of susceptible individuals with no immunity to the virus.

However, some observations suggested that the initial propagation of COVID-19 in China occurred in a latitude between 30 and 50 degrees N, with low humidity levels and low temperatures between 5 degrees and 11 degrees Celsius.

"The question of whether COVID-19 is a genuine seasonal disease becomes increasingly central, with implications for determining effective intervention measures," said Xavier Rodo, director of the Climate and Health programme at ISGlobal and coordinator of the study.

The researchers first analysed the association of temperature and humidity in the initial phase of SARS-CoV-2 spread in 162 countries across five continents, before changes in human behaviour and public health policies were put into place.

The results show a negative relationship between the transmission rate (R0) and both temperature and humidity at the global scale, the researchers said.

Higher transmission rates were associated with lower temperatures and humidity, they said.

The researchers then analysed how this association between climate and disease evolved over time, and whether it was consistent at different geographical scales.

They used a statistical method that was specifically developed to identify similar patterns of variation at different windows of time.

The team found a strong negative association for short time windows between the number of cases and temperature and humidity.

The patterns were consistent during the first, second and third waves of the pandemic at different spatial scales: worldwide, countries, down to individual regions within highly affected countries and even to the city level.

The first epidemic waves waned as temperature and humidity rose, and the second wave rose as temperatures and humidity fell, according to the researchers.

However, this pattern was broken during summertime in all continents, they said.

"This could be explained by several factors, including mass gatherings of young people, tourism, and air conditioning, among others, said Alejandro Fontal, researcher at ISGlobal and first author of the study.

When adapting the model to analyse transient correlations at all scales in countries in the Southern Hemisphere, where the virus arrived later, the same negative correlation was observed.

The climate effects were most evident at temperatures between 12 degrees and 18 degrees Celsius and humidity levels between 4 and 12 grammes per cubic metre (g/m3).

However, the study authors warned that these ranges are still indicative, given the short records available.

Using an epidemiological model, the researcher showed that incorporating temperature into the transmission rate works better for predicting the rise and fall of the different waves, particularly the first and third ones in Europe.

"Altogether, our findings support the view of COVID-19 as a true seasonal low-temperature infection, similar to influenza and to the more benign circulating coronaviruses," Rodo said.

This seasonality could contribute importantly to the transmission of SARS-CoV-2, since low humidity conditions have been shown to reduce the size of aerosols, and thereby increase airborne transmission of seasonal viruses such as influenza.

"This link warrants an emphasis on 'air hygiene' through improved indoor ventilation as aerosols are capable to persist suspended for longer times," said Rodo.

The study highlights the need to include meteorological parameters in the evaluation and planning of control measures.

(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

Topics :CoronavirusCoronavirus Testshealthcarehuman infection studies

First Published: Oct 26 2021 | 1:36 PM IST

Next Story