NASA simulator recreates planet-forming space dust

Image
ANI Washington
Last Updated : May 08 2014 | 9:25 AM IST

Researchers at NASA's Ames Research Center in Moffett Field, Calif., has successfully reproduced the processes that occur in the atmosphere of a red giant star and lead to the formation of planet-forming interstellar dust.

Using a specialized facility, called the Cosmic Simulation Chamber (COSmIC) designed and built at Ames, scientists now are able to recreate and study in the laboratory dust grains similar to the grains that form in the outer layers of dying stars.

Dust grains that form around dying stars and are ejected into the interstellar medium lead, after a life cycle spanning millions of years, to the formation of planets and are a key component of the universe's evolution.

Scientists have found the materials that make up the building blocks of the universe are much more complicated than originally anticipated.

Farid Salama, project leader and a space science researcher at Ames, said that the harsh conditions of space are extremely difficult to reproduce in the laboratory, and have long hindered efforts to interpret and analyze observations from space.

He said that using the COSmIC simulator they can now discover clues to questions about the composition and the evolution of the universe, both major objectives of NASA's space research program.

The team started with small hydrocarbon molecules that it expanded in the cold jet spray in COSmIC and exposed to high energy in an electric discharge. They detected and characterized the large molecules that are formed in the gas phase from these precursor molecules with highly sensitive detectors, then collected the individual solid grains formed from these complex molecules and imaged them using Ames' Scanning Electron Microscope (SEM).

Ella Sciamma-O'Brien, of the BAER Institute and a research fellow at Ames, said during COSmIC experiments, we are able to form and detect nanoparticles on the order of 10 nm size, grains ranging from 100-500 nanometers and aggregates of grains up to 1.5 micrometers in diameter, about a tenth the width of a human hair, and observe their structure with SEM, thus sampling a large size distribution of the grains produced.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 08 2014 | 9:10 AM IST

Next Story