Raman effect to detect phoney art, chemical weapons

Image
IANS New York
Last Updated : Jun 02 2015 | 2:22 PM IST

An international research team has developed nanotechnology that harnesses surface-enhanced Raman spectroscopy (SERS) to detect trace amounts of molecules in fraudulent paintings, diseases, chemical weapons and more.

Led by University at Buffalo (UB) engineers, the new method makes SERS simple and more affordable.

"The technology we're developing - a universal substrate for SERS - is a unique and, potentially, revolutionary feature," said lead author Qiaoqiang Gan from UB.

"It allows us to rapidly identify and measure chemical and biological molecules using a broadband nanostructure that traps wide range of light," Gan added.

The universal substrate can trap a wide range of wavelengths and squeeze them into very small gaps to create a strongly enhanced light field.

"It acts similar to a skeleton key. Instead of needing all these different substrates to measure Raman signals excited by different wavelengths, you'll eventually need just one. Just like a skeleton key that opens many doors," co-author Nan Zhang said.

Traditional substrates, or the silicon surfaces on which liquid samples are deposited, are typically designed for only a very narrow range of wavelengths.

This is problematic because different substrates are needed if scientists want to use a different laser to test the same molecules.

In turn, this requires more chemical molecules and substrates, increasing costs and time to perform the test. The new technology has a wide range of applications.

"The ability to detect even smaller amounts of chemical and biological molecules could be helpful with biosensors that are used to detect cancer, malaria, HIV and other illnesses," the researchers said.

"This could be helpful detecting forged pieces of art as well as restoring ageing pieces of art," Gan said.

"Also, the technology could improve scientists' ability to detect trace amounts of toxins in the air, water or other spaces that are causes for health concerns. And it could aid in the detection of chemical weapons," he added.

The study was published in the journal Advanced Materials Interfaces.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 02 2015 | 2:16 PM IST

Next Story