1,000 years old 'microbial Pompeii' unlocked

Image
Press Trust of India London
Last Updated : Feb 24 2014 | 3:32 PM IST
Scientists have discovered a 'microbial Pompeii' preserved on the teeth of skeletons around 1,000 years old.
The key to the discovery is the dental calculus (plaque) which preserves bacteria and microscopic particles of food on the surfaces of teeth, effectively creating a mineral tomb for microbiomes.
The research team discovered that the ancient human oral cavity carries numerous opportunistic pathogens and that periodontal disease is caused by the same bacteria today as in the past, despite major changes in human diet and hygiene.
They found that the ancient human oral microbiome already contained the basic genetic machinery for antibiotic resistance more than eight centuries before the invention of the first therapeutic antibiotics in the 1940s.
Scientists recovered dietary DNA from ancient dental calculus, allowing the identification of dietary components, such as vegetables, that leave few traces in the archaeological record.
Led by the University of Zurich, the University of Copenhagen, and the University of York, the research reveals that unlike bone which rapidly loses much of its molecular information when buried, calculus grows slowly in the mouth and enters the soil in a much more stable state helping it to preserve biomolecules.
This enabled the researchers, led by Dr Christina Warinner, to analyse ancient DNA that was not compromised by the burial environment.
They applied shotgun DNA sequencing to dental calculus for the first time. They reconstructed the genome of a major periodontal pathogen and produced possibly the first genetic evidence of dietary biomolecules to be recovered from ancient dental calculus.
Analysing this wealth of data required overcoming the formidable bioinformatics challenge of sorting and identifying millions of genetic sequences like puzzle pieces in order to reconstruct the complex biology of the ancient oral microbiome.
"Dental calculus is a window into the past and may well turn out to be one of the best-preserved records of human-associated microbes," said Professor Christian von Mering, an author of the study from SIB Swiss Institute of Bioinformatics.
"We knew that calculus preserved microscopic particles of food and other debris but the level of preservation of biomolecules is remarkable. A microbiome entombed and preserved in a mineral matrix, a microbial Pompeii," Professor Matthew Collins, of the University of York, said.
The study has wide reaching implications for understanding the evolution of the human oral microbiome and the origins of periodontal disease.
The study was published in the journal Nature Genetics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 24 2014 | 3:32 PM IST

Next Story