Wearable textiles-based electronics present new possibilities for flexible circuits, healthcare and environment monitoring, energy conversion and many others.
Cotton fabric is among the most widespread for use in clothing and textiles, as it is breathable and comfortable to wear, as well as being durable to washing. These properties also make it an excellent choice for textile electronics.
Researchers at the University of Cambridge in the UK and Jiangnan University in China, have devised low-cost, sustainable and environmentally-friendly method for making conductive cotton textiles by impregnating them with a graphene-based ink.
The team created inks of chemically modified graphene flakes that are more adhesive to cotton fibres than unmodified graphene. Heat treatment after depositing the ink on the fabric improves the conductivity of the modified graphene.
The adhesion of the modified graphene to the cotton fibre is similar to the way cotton holds coloured dyes and allows the fabric to remain conductive after several washes.
Although numerous researchers around the world have developed wearable sensors, most of the current wearable technologies rely on rigid electronic components mounted on flexible materials such as plastic films or textiles.
"Other conductive inks are made from precious metals such as silver, which makes them very expensive to produce and not sustainable, whereas graphene is environment-friendly, cheap and chemically compatible with cotton," said Torrisi.
"This method will allow us to put electronic systems directly into clothes. It's an incredible enabling technology for smart textiles," said Chaoxia Wang of Jiangnan University.
"Turning cotton fibres into functional electronic components can open to an entirely new set of applications from healthcare and wellbeing to the Internet of Things," said Torrisi.
Graphene is changing the science and technology landscape with attractive physical properties for electronics.
Graphene's atomic thickness and excellent electrical and mechanical properties give excellent advantages, allowing deposition of extremely thin, flexible and conductive films on surfaces and - with this new method - also on textiles.
This combined with the environmental compatibility of graphene and its strong adhesion to cotton make the graphene-cotton strain sensor ideal for wearable applications.
The study was published in the journal Carbon.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
