New theory of gravity passes first test

Image
Press Trust of India London
Last Updated : Dec 19 2016 | 2:42 PM IST
A Dutch theoretical physicist's alternative to Einstein's theory of gravity has passed its first test in a study of more than 30,000 galaxies.
A team led by astronomer Margot Brouwer from Leiden Observatory in The Netherlands tested the new theory of physicist Erik Verlinde from the University of Amsterdam for the first time through the lensing effect of gravity.
Brouwer and her team measured the distribution of gravity around more than 33,000 galaxies to put Verlinde's prediction to the test. She concluded that Verlinde's theory agrees well with the measured gravity distribution.
The gravity of galaxies bends space, such that the light travelling through this space is bent, as through a lens. Background galaxies that are situated far behind a foreground galaxy (the lens), thereby seem slightly distorted.
This effect can be measured in order to determine the distribution of gravity around a foreground-galaxy.
Astronomers have measured, however, that at distances up to a hundred times the radius of the galaxy, the force of gravity is much stronger than Einstein's theory of gravity predicts.
The existing theory only works when invisible particles, the so-called dark matter, are added.
Verlinde now claims that he not only explains the mechanism behind gravity with his alternative to Einstein's theory, but also the origin of the mysterious extra gravity, which astronomers currently attribute to dark matter.
Verlinde's new theory predicts how much gravity there must be, based only on the mass of the visible matter.
Brouwer calculated Verlinde's prediction for the gravity of 33,613 galaxies, based only on their visible mass.
She compared this prediction to the distribution of gravity measured by gravitational lensing, in order to test Verlinde's theory.
Her conclusion is that his prediction agrees well with the observed gravity distribution, but she emphasises that dark matter could also explain the extra gravitational force.
However, the mass of the dark matter is a free parameter, which must be adjusted to the observation. Verlinde's theory provides a direct prediction, without free parameters.
The research was published in the journal Monthly Notices of the Royal Astronomical Society.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 19 2016 | 2:42 PM IST

Next Story