Computer simulations of habitable climates on Earth-like planets have mainly focused on their atmospheres. However, studying their oceans is vital for understanding climate stability and habitability - as on our own Earth.
Until now, researchers had not considered that the seas on Earth-like planets might not be quite like ours - they might be significantly more or less salty than the oceans on Earth.
"The number of planets being discovered outside our solar system is rapidly increasing. Our research helps to answer whether or not these planets could sustain alien life," said David Stevens, from University of East Anglia (UEA) in UK.
"A planet's habitable zone is based on its distance from the sun and temperatures at which it is possible for the planet to have liquid water," he said.
"We wanted to find out what might be happening on other planets which might appear superficially similar to Earth, but where conditions such as salinity are radically different to our own planet," said Stevens.
The research team used computer models of ocean circulation on exoplanets to see what would happen when their oceans had different salinity levels to Earth.
"On Earth, we have a circulation where warm water moves towards the poles at the surface, before being cooled, then sinking at high latitudes and travelling towards the equator at depth," said Manoj Joshi from UEA.
"Our research shows that oceans on other planets with a much higher salinity could circulate in the opposite direction - with polar water flowing towards the equator at the surface, sinking in the tropics and travelling back towards the poles at depth," Joshi said.
The study was published in the journal PNAS.
