Robotic camera mimics humans to track basketball action

Image
Press Trust of India Toronto
Last Updated : Jan 08 2015 | 5:20 PM IST
Researchers at Disney have developed new robotic cameras that mimic human operators to anticipate action during a basketball game for better frame shots.
Automated cameras make it possible to broadcast even minor events, but the result often looks robotic.
Now scientists have made it possible for robotic cameras to learn from human operators how to better frame shots of a basketball game.
Many automated systems determine where to point the camera by tracking a key object.
But human camera operators are able to anticipate action and can adjust the camera's pan, tilt and zoom controls to allow more space, or "lead room," in the direction that the action is moving.
The result is video imagery that is smooth and aesthetically pleasing, researchers said.
Peter Carr, a Disney Research engineer and Jianhui Chen, an intern and a PhD student in computer science at the University of British Columbia, devised a data-driven approach that allows a camera system to monitor an expert camera operator during a basketball game.
The automated system uses machine learning algorithms to recognise the relationship between player locations and corresponding camera configurations.
"We don't use any direct information about the ball's location because tracking the ball with a single camera is difficult," Carr said.
"But players are coached to be in the right place at the right time, so their formations usually give strong clues about the ball's location," Carr added.
Carr and Chen demonstrated their system on a high school basketball game. They used two cameras - a broadcast camera that was operated by a human expert and another that was a stationary camera that the computer used to detect and track the players automatically.
"Because the main broadcast camera in basketball maintains a wide shot of the court, we focused on predicting the appropriate pan angle of the camera," Carr said.
Following supervised learning based on the operator's actions, the system was able to predict how to pan the camera in a way that was superior to the best previous algorithm and that did indeed mimic a human operator.
Carr said he expects the method can be adapted to other sports, possibly with additional features.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 08 2015 | 5:20 PM IST

Next Story