Scientists glimpse Einstein's gravitational waves

Image
AFP Washington
Last Updated : Feb 11 2016 | 10:42 PM IST
In a landmark discovery for physics and astronomy, international scientists said today they have glimpsed the first direct evidence of gravitational waves, or ripples in space-time, which Albert Einstein predicted a century ago.
When two black holes collided some 1.3 billion years ago, the joining of those two great masses sent forth a wobble that hurtled through space and arrived at Earth on September 14, 2015, when it was picked up by sophisticated instruments, researchers announced.
"Like Galileo first pointing his telescope upward, this new view of the sky will deepen our understanding of the cosmos, and lead to unexpected discoveries," said France Cordova, director of the US National Science Foundation, which funded the work.
The phenomenon was observed by two US-based underground detectors, designed to spot tiny vibrations from passing gravitational waves, a project known as the Laser Interferometer Gravitational-wave Observatory, or LIGO.
It took scientists months to verify their data and put it through a process of peer-review before announcing it today, marking the culmination of decades of efforts by teams around the world.
"LIGO has ushered in the birth of an entirely new field of astrophysics," said Cordova.
Gravitational waves are a measure of strain in space, an effect of the motion of large masses that stretches the fabric of space-time -- a way of viewing space and time as a single, interweaved continuum.
They travel at the speed of light and cannot be stopped or blocked by anything.
Einstein said space-time could be compared to a net, bowing under the weight of an object. Gravitational waves would be like ripples that emanate from a pebble thrown in a pond.
While scientists have previously been able to calculate gravitational waves, they had never before seen one directly.
According to the Massachusetts Institute of Technology's (MIT) David Shoemaker, the leader of the LIGO team, it looked just like physicists thought it would.
"The waveform that we can calculate based on Einstein's theory of 1916 matches exactly what we observed in 2015," David Shoemaker, the leader of the LIGO team, told AFP.
"It looked like a chirp, it looked at something that started at low frequencies -- for us low frequencies means 20 or 30 hertz, that's like the lowest note on a bass guitar, sweeping very rapidly up over just a fraction of a second... up to 150 hertz or so, sort of near middle C on a piano."
The chirp "corresponded to the orbit of these two black holes getting smaller and smaller, and the speed of the two objects going faster and faster until the two became a single object," he explained.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 11 2016 | 10:42 PM IST

Next Story