ISRO said it has achieved a breakthrough in rocket engine technology with the development of a lightweight Carbon-Carbon (C-C) nozzle for rocket engines, enhancing payload capacity.
This innovation accomplished by the space agency's Vikram Sarabhai Space Centre (VSSC) promises to enhance the vital parameters of rocket engines, including thrust levels, specific impulse, and thrust-to-weight ratios, thereby boosting the payload capacity of launch vehicles, it said.
Thiruvananthapuram-based VSSC leveraged advanced materials like Carbon-Carbon (C-C) composites to create a nozzle divergent that offers exceptional properties, an ISRO statement said.
By utilising processes such as carbonisation of green composites, chemical vapor Infiltration, and high-temperature treatment, it has produced a nozzle with low density, high specific strength, and excellent stiffness, capable of retaining mechanical properties even at elevated temperatures, it said.
A key feature of the C-C nozzle is its special anti-oxidation coating of silicon carbide, which extends its operational limits in oxidising environments.
This innovation not only reduces thermally induced stresses but also enhances corrosion resistance, allowing for extended operational temperature limits in hostile environments, according to ISRO.
The potential impact of this development is significant, particularly for the ISRO's workhorse launcher, the Polar Satellite Launch Vehicle (PSLV). The PS4, the fourth stage of the PSLV, currently employs twin engines with nozzles made from columbium alloy. However, by replacing these metallic divergent nozzles with C-C counterparts, a mass reduction of approximately 67 per cent can be achieved, the space agency said.
This substitution is projected to increase the payload capability of the PSLV by 15 kg, a notable enhancement for space missions.
The successful testing of the C-C nozzle divergent marked a major milestone for ISRO. On March 19, 2024, a 60-second hot test was conducted at the High-Altitude Test (HAT) facility in ISRO Propulsion Complex (IPRC), Mahendragiri in Tamil Nadu, confirming the system's performance and hardware integrity. "Subsequent tests, including a 200-second hot test on April 2, 2024, further validated the nozzle's capabilities, with temperatures reaching 1216 K, matching predictions," the release said.
The collaborative effort involved the Liquid Propulsion Systems Centre (LPSC) at Valiamala near Thiruvananthapuram which designed and configured the test, and IPRC, which conducted the instrumentation and execution of the tests at its HAT facility, it was noted.
(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)