Physicists from Imperial College London have devised an extremely rapid heating mechanism that they believe could heat certain materials to ten million degrees in much less than a million millionth of a second.
The method, proposed for the first time, could be relevant to new avenues of research in thermonuclear fusion energy, where scientists are seeking to replicate the Sun's ability to produce clean energy.
Also Read
Researchers have been using high-power lasers to heat material as part of the effort to create fusion energy for many years.
In the new study, the physicists at Imperial were looking for ways to directly heat up ions - particles which make up the bulk of matter.
When lasers are used to heat most materials, the energy from the laser first heats up the electrons in the target. These in turn heat up the ions, making the process slower than targeting the ions directly.
The team discovered that when a high-intensity laser is fired at a certain type of material, it will create an electrostatic shockwave that can heat ions directly.
"It's a completely unexpected result. One of the problems with fusion research has been getting the energy from the laser in the right place at the right time. This method puts energy straight into the ions," said the paper's lead author, Dr Arthur Turrell.
Normally, laser-induced electrostatic shockwaves push ions ahead of them, causing them to accelerate away from the shockwave but not heat up.
However, using sophisticated supercomputer modelling, the team discovered that if a material contains special combinations of ions, they will be accelerated by the shockwave at different speeds.
This causes friction, which in turn causes them to rapidly heat. They found that the effect would be strongest in solids with two ion types, such as plastics.
The heating is so fast in part because the material targeted is so dense. The ions are squeezed together to almost ten times the usual density of a solid material as the electrostatic shockwave passes, causing the frictional effect to be much stronger than it would be in a less-dense material, such as a gas.
The technique, if proven experimentally, could be the fastest heating rate ever demonstrated in a lab for a significant number of particles.
The study was published in the journal Nature Communications.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)