How Twitter bots affected the US presidential campaign
The content Americans see on social media every day is not produced by human users. About one in every five election-related tweets from Sept. 16 to Oct. 21, 2016, was generated by computer software
)
A grand jury led by special counsel Robert Mueller has indicted 13 Russians for, among other things, using social media accounts to influence public debate in the lead-up to the 2016 U.S. presidential election. My research has found that large numbers of participants in that online conversation were biased robots created by unseen groups with unknown agendas.
Since 2012, I have been studying how people discuss social, political, ideological and policy issues online. In particular, I have looked at how social media are abused for manipulative purposes.
It turns out that much of the political content Americans see on social media every day is not produced by human users. Rather, about one in every five election-related tweets from Sept. 16 to Oct. 21, 2016, was generated by computer software programs called “social bots.”
These artificial intelligence systems can be rather simple or very sophisticated, but they share a common trait: They are set to automatically produce content following a specific political agenda determined by their controllers, who are nearly impossible to identify. These bots have affected the online discussion around the presidential election, including leading topics and how online activity was perceived by the media and the public.
How active are they?
The operators of these systems could be political parties, foreign governments, third-party organizations, or even individuals with vested interests in a particular election outcome. Their work amounts to at least four million election-related tweets during the period we studied, posted by more than 400,000 social bots.
That’s at least 15 percent of all the users discussing election-related issues. It’s more than twice the overall concentration of bots on Twitter – which the company estimates at 5 to 8.5 percent of all accounts.
To determine which accounts are bots and which are humans, we use Bot Or Not, a publicly available bot-detection service that I developed in collaboration with colleagues at Indiana University. Bot Or Not uses advanced machine learning algorithms to analyze multiple cues, including Twitter profile metadata, the content and topics posted by the account under inspection, the structure of its social network, the timeline of activity and much more. After considering more than 1,000 factors, Bot Or Not generates a likelihood score that the account under scrutiny is a bot. Our tool is 95 percent accurate at this determination.
There are many examples of bot-generated tweets, supporting their candidates, or attacking the opponents. Here is just one: