You are here: Home » PTI Stories » National » News
Business Standard

IIT scientists develop silk mats that could treat arthritis

Press Trust of India  |  New Delhi 

Scientists from IIT Guwahati have synthesised mats made of silk-proteins and bioactive glass fibres that they believe can assist the growth of bone cells and repair worn-out joints in arthritis patients.

The disease most commonly affects joints in the knees, hips, hands, feet, and spine and is marked by the breakdown of joint cartilage and underlying bones.

Left untreated, it can cause severe pain, swelling, and eventually limited range of movement.

"Current clinical treatment methods are limited by lack of viable tissue substitutes to aid the repair process," Biman B Mandal from Indian Institute of Technology Guwahati (IITG) told PTI.

To develop a suitable tissue substitute, scientists, including those from the University College London in the UK, looked into the natural bone-cartilage interface and tried to mimic it synthetically in lab conditions.

Knee osteoarthritis is the most common bone and joint disease in India. However, Mandal pointed out that the available clinical grafts were expensive.

"We used silk, a natural protein to fabricate electrospun mats to mimic the cartilage portion and bioactive glass to develop a composite material, similar to the natural tissue," said Mandal.

For the mat, scientists used a kind of silk easily available in North-east India.

"Muga (Assam) silk is endowed with properties that enhance the healing process," he said.

The researchers adopted a green fabrication approach for the developing the silk composite mats - electrospinning.

"It is similar to knitting, except that it utilises electric high voltage force to draw ultrafine fibres," Mandal said.

A layer by layer approach was followed, where the bone layer was first formed, on top of which the cartilage layer was developed. The resulting composite mat resembled the architecture of the bone-cartilage interface.

To assist the regenerative process, the mats would be grafted in the defected joint with cells harvested from the patient.

"The mats bond with the native tissue and acts as an artificial tissue construct. Eventually the mats degrade with time and new tissue is formed in its place," Mandal said.

The mats were tested under laboratory conditions, where artificial tissue formed efficiently during the two weeks of the study, researchers said.

However, the mats need to be tested in suitable animal models like rabbits and pigs, and finally in human trials, before they become available to patients.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

Dear Reader,


Business Standard has always strived hard to provide up-to-date information and commentary on developments that are of interest to you and have wider political and economic implications for the country and the world. Your encouragement and constant feedback on how to improve our offering have only made our resolve and commitment to these ideals stronger. Even during these difficult times arising out of Covid-19, we continue to remain committed to keeping you informed and updated with credible news, authoritative views and incisive commentary on topical issues of relevance.
We, however, have a request.

As we battle the economic impact of the pandemic, we need your support even more, so that we can continue to offer you more quality content. Our subscription model has seen an encouraging response from many of you, who have subscribed to our online content. More subscription to our online content can only help us achieve the goals of offering you even better and more relevant content. We believe in free, fair and credible journalism. Your support through more subscriptions can help us practise the journalism to which we are committed.

Support quality journalism and subscribe to Business Standard.

Digital Editor

First Published: Sun, August 06 2017. 12:57 IST
RECOMMENDED FOR YOU